

Course title	Distributed/Decentralized Control and
Course cicie	
Caiophifia	Optimization of Large-Scale Systems
Scientific	ING-INF/04
Discipline Sector	
Hours of	10 hours
instruction	
CFU	1 credit (ECTS)
Semester	Second
Goal	This course aims at providing PhD students with modeling and methodological tools for formulating and solving large-scale optimization problems with a focus on the use of duality theory. During the course several optimization problems will be formalized, particularly referred to relevant issues within management and industrial engineering. Problem definition and resolution will be also implemented in simulation and engineering software (Matlab). The final goal is to provide PhD students with the necessary background for starting research in the field of duality-based decentralized and distributed optimization techniques to be applied to large-scale systems. Each lesson consists in lectures, numerical examples,
	simulation and analysis of case studies.
Syllabus	Systems schemes and architectures: centralized and non-centralized approach. Preliminaries on unconstrained and set constrained optimization and basics on convex optimization. Duality (Lagrange multipliers theory) and duality based algorithms: waterfilling, dual ascent method (DAM), Augmented Lagrangian Method (ALM), Alternating Direction Method of Multipliers (ADMM). Decentralized optimization problem set up and duality- based methods: DAM, ALM, and ADMM for separable convex programming. Distributed optimization problem set up and duality- based methods: distributed DAM, distributed ADMM, distributed waterfilling. Motivating examples and case studies.
Bibliography	Recommended books:
	 Bertsekas, D. P., & Tsitsiklis, J. N. (1989). Parallel and distributed computation: numerical methods (Vol. 23). Englewood Cliffs, NJ: Prentice Hall Boyd S. & Vandenberghe L., Convex Optimization, Cambridge University Press, UK, 2004. Slides and supporting material from lecturer.
Examination method	End-course examination based on a test.

Course title	Non integer order gratems and controllers
	Non-integer order systems and controllers
Scientific	ING-INF/04
Discipline Sector	
Hours of	10 hours
instruction	
CFU	1 credit (ECTS)
010	
Semester	Second
Goal	The course concerns non-integer-order systems. These systems can propose engineering solutions to modeling and control problems that often improve those based on integer-order calculus. Basic tools of fractional calculus are introduced, and some methods and models are described for different engineering fields. Models for practical applications are proposed. Moreover, approaches to design and realize non-integer-order (fractional-order) controllers are described. These controllers show higher flexibility, increased robustness, and ability to obtain a better trade-off between stability and dynamic performance with respect to widespread PID controllers. As case-studies, the course uses applications in automotive and mechatronic
Syllabus	<pre>systems Introduction to fractional calculus and non-integer-order (fractional-order) systems - Modeling of non-integer-order systems - Models for automotive and mechatronic applications - Non-integer-order (fractional-order) controllers: types, design, tuning, realization, fundamental properties, simulation, experimental validation - Non-integer-order (fractional-order) controllers for some applications</pre>

Bibliography	 R. Caponetto, G. Dongola, L. Fortuna, I. Petráš, Fractional Order Systems: Modeling and Control Applications. Singapore: World Scientific, 2010. C. A. Monje, Y. Q. Chen, B. M. Vinagre, D. Xue, V. Feliu, Fractional-order Systems and Controls: Fundamentals and Applications. London, UK: Springer-Verlag, 2010. Some reference papers.
Examination method	Discussion of a modeling or control problem, also by using simulation software tools (Matlab/Simulink).

	Deen Deinfeusement Jesuning feu Centuel of
Course title	Deep Reinforcement Learning for Control of
	Autonomous Systems
Scientific	ING-INF/04
Discipline Sector	
Hours of	10 hours
instruction	
CFU	1 credit (ECTS)
Semester	First/Second
Goal	Reinforcement learning deals with solving sequential decision problems when minimal prior information is available. Solving sequential decision problems means finding their optimal control policies. Using reinforcement learning algorithms, the optimal policy is learned through the cooperation between the agent (or controller) and the system to be controlled. Deep Reinforcement Learning (DRL) is a subfield of machine learning that combines reinforcement learning (RL) and deep learning. The course will propose the main modeling frameworks, investigate the most relevant deep reinforcement learning techniques and show some interesting applications.
Syllabus	 Markov chains: definition, properties and application. Introduction to Reinforcement Learning and Deep Reinforcement Learning: states, actions, policies, reward, observations; Real-word examples and implementation in engineering tools (e.g., Python, Matlab)
Bibliography	 Vincent François-Lavet, Peter Henderson, Riashat Islam, Marc G. Bellemare and Joelle Pineau (2018), "An Introduction to Deep Reinforcement Learning", Foundations and Trends in Machine Learning: Vol. 11, No. 3-4, pp 219-354. Scientific papers.
Examination method	Final examination in class

Course title	Control and Security of Cyber Physical
course title	Systems
Scientific	ING-INF/04
Discipline Sector	10.1
Hours of	10 hours
instruction	
CFU	1 credit (ECTS)
Semester	First/Second
Goal	The aim of the course is to show the importance of control and security in Cyber Physical Systems (CPSs). CPSs are systems where a decision making(cyber/control)component is tightly integrated with a physical system(with sensing/actuation) to enable real-time monitoring and control. Therefore, control and security are crucial issues for commissioning these systems and for improving competitiveness of companies. In this context, the study of opacity is a fundamental notion to determine if an industrial "secret" can be discovered by a malicious observer (intruder).
Syllabus	The course includes the following four main sections:
	 Industry 4.0 - Introduction and innovations for the industrial companies. Cyber physical system and cloud computing system: examples of architectures with integrated control components. Control strategies in a Cloud computing system (distributed task assignment, consensus, etc.). Opacity notion, models and algorithms to defend crucial information by intruder
Diblie	attacks.
Bibliography	Scientific papers.
Examination method	Final examination in class

Course title	Simulation Systems for Engineering
	Applications
Scientific	ING-INF/04
Discipline Sector	ING INF/04
Hours of	10 hours
instruction	10 HOULS
CFU	1 credit (ECTS)
CFO	i credit (ECIS)
Semester	Second
Goal	The course shall address the basis of
	simulation techniques for engineering
	applications, with a focus on the underlying
	mathematical formalism.
	At end of this course students will be able
	to deal with system modeling and to implement
	simulation models in engineering tools (e.g.,
	Python, Matlab).
	Each lesson shall consist in lecture and
	numerical examples.
Syllabus	- Recapitulation of fundamental algebraic
-	concepts: vector, matrices, vector spaces;-
	Systems vs Models: fundamentals of dynamical
	modelling;
	- Networks and Graphs: algebraic properties
	and applications;
	- Applicative examples from literature:
	analysis and implementation in engineering
	tools (e.g., Python, Matlab)
Bibliography	- Boyd, S., & Vandenberghe, L. (2018).
BIDIIOgraphy	Introduction to applied linear algebra:
	vectors, matrices, and least squares.
	Cambridge university press.
	- Boyd, S. P., & Vandenberghe, L. (2004).
	Convex optimization. Cambridge university
	press.
	- Kluever, C. A. (2020). Dynamic systems:
	modeling, simulation, and control. John Wiley &
	Sons. - M. Dotoli, M.D. Fonti, MATIAR - Cuida al
	- M. Dotoli, M.P. Fanti, MATLAB - Guida al
	laboratorio di automatica, 448 pp.,
	CittàStudi Edizioni, Grugliasco (TO), ISBN
	978-88-251-7325-3, 2008.
	- Pine, D. J. (2019). Introduction to Python
	for science and engineering. CRC press.
Examination method	Final examination in class.

Course title	Simulation, optimization, and
	management of smart energy systems
Scientific	ING-INF/04
Discipline Sector	ING-INF/04
Hours of	10 1
	10 hours
instruction	
CFU	1 credit (ECTS)
Semester	Second
Goal	The course will focus on models, techniques and tools for the simulation and optimization of energy systems in smart buildings and smart mobility applications. At the end of this course students will achieve the basics for modeling and simulating such energy systems using engineering tools (e.g., Matlab, SUMO). Each lesson will consist in lecture and software exercises.
Syllabus	 Challenges in the energy management of smart buildings Modeling and simulating energy systems in home/buildings Challenges in the energy management of smart e-mobility systems Modeling and simulating e-mobility systems
Bibliography	 Moss, K. (2006). Energy management in buildings. Taylor & Francis. Yue Cao, Yuanjian Zhang, Chenghong Gu, Automated and Electric Vehicle: Design, Informatics and Sustainability, Springer 2023.
Examination method	Final examination in class

Course title	Game Theory for Controlling Autonomous
	Systems
Scientific	ING-INF/04
Discipline Sector	
Hours of	10 hours
instruction	
CFU	1 credit (ECTS)
Semester	Second
Goal	This course is designed to provide PhD students with the necessary modeling and methodological tools for analyzing and
	designing algorithms to solve game
	equilibrium problems. The course will include
	lectures, numerical examples, simulations,
	and analysis of case studies.
Syllabus	1. Introduction and motivation
	2. Background
	a. Convex Optimization: Convex sets and
	functions. Set-valued mappings. Normal cone
	and tangent cone operators. Projection and
	proximal operators. Lagrangian duality and KKT conditions.
	b. Monotone Operator Theory: Fixed
	points, zeros, and contraction mappings.
	Averaged and nonexpansive mappings. Fixed
	point theorems and algorithms.
	3. Nash equilibrium
	a. Background, Nash equilibrium problem
	and best response mapping.
	b. Applications and models: Linear
	complementarity problems and variational
	inequalities.
	c. Existence and uniqueness of
	equilibria.
	d. Algorithms.
	4. Generalized Nash equilibrium
	a. Background, Generalized Nash
	equilibrium problem.
	b. Applications and models: Quasi-
	variational inequalities and mixed
	complementarity problems.
	c. Existence and uniqueness of
	equilibria.
	d. Algorithms.

	-
Bibliography	References:
	[1] Boyd, Stephen P., and Lieven
	Vandenberghe. Convex optimization. Cambridge
	university press, 2004.
	[2] Bauschke, Heinz H., and Patrick L.
	Combettes. Convex analysis and monotone
	operator theory in Hilbert spaces. Vol. 408.
	Springer, 2011.
	[3] Facchinei, Francisco, and Jong-Shi Pang,
	eds. Finite-dimensional variational
	inequalities and complementarity problems.
	Springer , 2003.
	[4] Osborne, Martin J. An introduction to
	game theory. Vol. 3. No. 3. New York: Oxford
	university press, 2004.
	[5] Basar, Tamer, and Georges Zaccour, eds.
	Handbook of dynamic game theory. Berlin:
	Springer, 2018.
	Slides and supporting material from lecturer.
Examination method	• End-course examination based on a
	project work, which involves applying the
	learned concepts and techniques to a real-
	world problem.
	• Evaluation of class participation,
	including active engagement in lectures,
	discussions, and case study analysis.

Course titleModeling and simulation of biosystemsScientificING-INF/04Discipline Sector20 hoursHours of instruction20 hoursCFU2 credits (ECTS)SemesterJanuary-February or June 2025GoalThis course provides mathematical tools model, analyze, simulate and cont biological and medical systems, exploit both deterministic and stochastic framewor At end of this course, the students will able to deal with system modeling and implement simulation models in Matlab.Syllabus- Review of basic concepts of biology probability; deterministic vs. stochas approach. - Stochastic approach: Reaction Networ Continuous-Time Markov Chains; the Mas Equation and its properties, station distribution, the macroscopic equation, or step processes. - Mesoscopic models: the Lange	rol ing ks. be to
Discipline SectorHours of instructionCFU2 credits (ECTS)SemesterJanuary-February or June 2025GoalThis course provides mathematical tools model, analyze, simulate and cont biological and medical systems, exploit both deterministic and stochastic framewor At end of this course, the students will able to deal with system modeling and implement simulation models in Matlab.Syllabus- Review of basic concepts of biology probability; deterministic vs. stochas approach. - Stochastic approach: Reaction Networ Continuous-Time Markov Chains; the Mas Equation and its properties, station 	rol ing ks. be to
Hours of instruction20 hoursCFU2 credits (ECTS)SemesterJanuary-February or June 2025GoalThis course provides mathematical tools model, analyze, simulate and cont biological and medical systems, exploit both deterministic and stochastic framewor At end of this course, the students will able to deal with system modeling and implement simulation models in Matlab.Syllabus- Review of basic concepts of biology probability; deterministic vs. stochas approach. - Stochastic approach: Reaction Networ Continuous-Time Markov Chains; the Mas Equation and its properties, station 	rol ing ks. be to
instructionCFU2 credits (ECTS)SemesterJanuary-February or June 2025GoalThis course provides mathematical tools model, analyze, simulate and cont biological and medical systems, exploit both deterministic and stochastic framewor At end of this course, the students will able to deal with system modeling and implement simulation models in Matlab.Syllabus- Review of basic concepts of biology probability; deterministic vs. stochas approach. - Stochastic approach: Reaction Networ Continuous-Time Markov Chains; the Mas Equation and its properties, station distribution, the macroscopic equation, or 	rol ing ks. be to
CFU2 credits (ECTS)SemesterJanuary-February or June 2025GoalThis course provides mathematical tools model, analyze, simulate and cont biological and medical systems, exploit both deterministic and stochastic framewor At end of this course, the students will able to deal with system modeling and implement simulation models in Matlab.Syllabus- Review of basic concepts of biology probability; deterministic vs. stochas approach. - Stochastic approach: Reaction Networ Continuous-Time Markov Chains; the Mas Equation and its properties, station distribution, the macroscopic equation, or 	rol ing ks. be to
SemesterJanuary-February or June 2025GoalThis course provides mathematical tools model, analyze, simulate and cont biological and medical systems, exploit both deterministic and stochastic framewor At end of this course, the students will able to deal with system modeling and implement simulation models in Matlab.Syllabus- Review of basic concepts of biology probability; deterministic vs. stochas approach. - Stochastic approach: Reaction Networ Continuous-Time Markov Chains; the Mas Equation and its properties, station distribution, the macroscopic equation, o 	rol ing ks. be to
GoalThis course provides mathematical tools model, analyze, simulate and cont biological and medical systems, exploit both deterministic and stochastic framewor At end of this course, the students will able to deal with system modeling and implement simulation models in Matlab.Syllabus- Review of basic concepts of biology probability; deterministic vs. stochas approach. - Stochastic approach: Reaction Networ Continuous-Time Markov Chains; the Mas Equation and its properties, station distribution, the macroscopic equation, or 	rol ing ks. be to
model, analyze, simulate and cont biological and medical systems, exploit both deterministic and stochastic framewor At end of this course, the students will able to deal with system modeling and implement simulation models in Matlab.Syllabus- Review of basic concepts of biology probability; deterministic vs. stochas approach. - Stochastic approach: Reaction Networ Continuous-Time Markov Chains; the Mas Equation and its properties, station distribution, the macroscopic equation, or step processes.	rol ing ks. be to
Syllabus- Review of basic concepts of biology probability; deterministic vs. stochas approach. - Stochastic approach: Reaction Networ Continuous-Time Markov Chains; the Mas Equation and its properties, station distribution, the macroscopic equation, or step processes.	
	ks, ter
Equation and the Wiener Process. - Deterministic approach: ordin differential equation (ODE) models. - Modeling, quantitative and qualitat analysis, simulation and control examples. - Numerical simulation of determinis and stochastic systems. - Biological and biomedical examples.	ary ive
 Bibliography J. D. Murray, Mathematical biology, 3rd et tion. Springer New York, 2001. J. Keener, J. Sneyd (Eds.), Mathematic physiology. Springer New York, 2009. E. Klipp, W. Liebermeister, C. Wierling, A. Kowald, Systems biology: a textbook, C. Wiley & Sons, 2016. Uri Alon, An introduction to systems biology: design principles of biological of cuits, CRC press, 2019. Slides and support material from lectur 	and ohn
Examination method Final examination by written/oral question	er.

Course title	Demensional attaches at a model a statical second
Course title	Dynamical stochastic models of biological
	systems
Scientific	ING-INF/04
Discipline Sector	
Hours of	10 hours
instruction	
CFU	1 credit (ECTS)
Semester	Second
Goal	This course gives the mathematical tools to
	model and analyze most common biological
	frameworks such as chemical reactions and
	gene transcription networks, according to the
	stochastic approach of the Chemical Master
	Equations
Syllabus	The kind of chemical reactions, and their
-1	mathematical representation: the
	stoichiometric matrix. Mass action
	law and fluxes - The stochastic approach:
	Chemical Master Equations (CME). CMEs modeled
	by Continuous-Time Markov Chains
	- The Gillespie Algorithm
	- Moment computations
	- The Langevin equation
	- Examples from enzymatic/metabolic reactions
	and gene transcription networks
Bibliography	N.G Van Kampen, Stochastic Processes in
	Physics and Chemistry, 3rd edition, North
	Holland, 2007
	- E. Klipp, W. Liebermeister, C. Wierling,
	and A. Kowald, Systems biology: a textbook,
	John Wiley & Sons, 2016.
	- Slides and support material from lecturer
Examination method	Final examination in class

Course title	Data-driven fault diagnosis and fault
course title	prognosis
Scientific	ING-INF/04
Discipline Sector	ING INF/04
Hours of	10 hours
instruction	10 Hours
CFU	1 credit (ECTS)
CFO	i credit (ECIS)
Semester	Second
Goal	This module aims at providing PhD students with the main concepts of data-driven fault diagnosis and fault prognosis which are at the base of modern condition-based and predictive maintenance. During the module, the students will learn how to apply a data-driven workflow to solve real case studies and to adapt it to the specific cases of fault diagnosis and fault prognosis. The workflow will include data processing, feature extraction and model training, with some insights on deployment complexity; problem resolution will also be implemented by using a common engineering software (MATLAB). The final goal is to provide PhD students with the necessary background to process sensors data and use them to monitor the condition of a physical system, classify possible undesired behaviours and eventually estimate the remaining useful life of specific components. Each lesson consists in lectures, numerical
Syllabus	<pre>examples and analysis of case studiesMotivating examples: from industry to robotic applicationsNomenclature: fault, maintenance and auparuision</pre>
	<pre>supervisionReliability and safetyLimit checking, trend checking and hypothesis testingData types and data normalizationFiltering (signal processing)Signal features in the time and frequency domainFeatures selection and dimensionality reduction.</pre>

	-Fault diagnosis: features extraction and
	classification.
	-Bias-variance trade-off.
	-Overfitting and cross validation.
	-Loss functions and performance indicators.
	-Hyperparameters optimization.
	-Fault prognosis: condition indicators and
	remaining useful life estimation.
	-Data-driven fault diagnosis and fault
	prognosis workflows.
	-MATLAB Predictive Maintenance Toolbox.
	-Case studies and benchmarks.
Bibliography	Recommended books:
	• Isermann, Rolf. Fault-diagnosis
	systems: an introduction from fault detection
	to fault tolerance. Springer Science &
	Business Media, 2005.
	 Bishop, Christopher M., Pattern
	Recognition and Machine Learning (Information
	5
	Science and Statistics), 2006, Springer-
	Verlag.
	• G. Pillonetto, T. Chen, A. Chiuso, G.
	D. Nicolao, and L. Ljung, Regularized System
	Identification. Springer, 2022.
	Slides and supporting material from lecturer
	(will be made available during the first
	lecture).
Examination method	End-course examination based on a project
	work.

Course title	Generation December for modeling and method		
Course title	Gaussian Processes for modeling and control of robotics systems		
ani antifi n	=		
Scientific	ING-INF/04		
Discipline Sector			
Hours of	20 hours		
instruction			
CFU	2 credit (ECTS)		
Semester	Second		
Goal	<pre>The course shall address the basis of Gaussian Process Regression applied to modeling and control of robotic manipulators. At end of this course, students will be able to apply Gaussian Process Regression to the following problems: - Inverse dynamics identification; - Estimation of forward dynamics model to simulate the evolution of a robotic system; - Use such models to derive a controller. Lesson shall consist in lecture and numerical examples in MATLAB and Python.</pre>		
Syllabus	- Introduction to robot dynamics and standard		
Bibliography	 Introduction to robot dynamics and standard identification strategies; Introduction to Gaussian Process Regression; Gaussian Process models for inverse dynamics identification; Derivation of controllers based on inverse dynamics models derived by means of Gaussian Process Regression; Forward Dynamics identification; Brief overview of GP-based Model-Based Reinforcement Learning algorithms; Carl Edward Rasmussen, Christopher K. I. 		
	<pre>Williams. 2005. Gaussian Processes for Machine Learning,Publisher: The MIT Press Published: 2005 - Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani, and Giuseppe Oriolo. 2008. Robotics: Modelling, Planning and Control (1st. ed.). Springer Publishing Company, Incorporated.</pre>		
Examination method	Final examination in via Zoom		

Course title	Human autonomous system interaction		
Scientific Discipline Sector	ING-INF/04		
Hours of	10 hours		
instruction			
CFU	1 credit (ECTS)		
Semester	Second		
Goal	The course aims at providing PhD students with the main concepts of the well-known technology for improving human-autonomy interaction with a special focus on autonomous systems. It is especially focused on technology and case studies relevant to complex, applied environments in which people interact with autonomous systems regularly, particularly in the context of ambient assisted living. The course focuses on approaches that include task inputs from humans: how to model humans and their tasks and at what level of details. Moreover, the human in-the loop approach will be introduced as a new scenario to facilitate the goal achievement, to reduce the anomalies and the unexpected responses from the system or inappropriate responses by the human to enhance human safety. New human-system engineering techniques are needed to ensure autonomous systems will be smoothly and readily adopted into society. Autonomous systems that work together in the environment should integrate the connections and interactions between them, over networks, with the physical environment, and with humans must be assured, resilient, productive, and fair in the autonomous future. Autonomous systems should be analysed including concept, context, requirements, design, integration, operationalization, validation, testing and evaluation. During the course, the students will learn how the human-autonomous system interaction is achieved and how it is articulated. The workflow will include data processing, feature extraction and model training for		

	human-robot interaction tasks, with some insights on deployment complexity; problem resolution will also be proposed by using a common engineering software (MATLAB), and the ROS (Robot Operating System). Each lesson consists in lectures, numerical examples and analysis of case studies
Syllabus	 Autonomous control of mobile based robots; Navigation and path planning; Human-Robots/systems interaction; Motion/action recognition through RGB-D camera or vision sensors; Cycles of learning for autonomous system for human interaction (learning from human demonstration, human intervention, human evaluation); Machine learning and reinforcement learning techniques; Data storage under a variety of conditions; Cooperation across multiple systems with the human supervision; Examples of human-in-the-loop approach; Interactions between autonomous platforms; Software for assisting complex human tasks; Case studies and benchmarks
Bibliography	Slides and supporting material from lecturer.
Examination method	End-course examination based on a project work and an oral test.

Course title	Intelligent Supervisory Systems		
Scientific	ING-INF/04		
Discipline Sector	TING-TINE/04		
Hours of	20 hours		
instruction	20 110415		
CFU	2 credits (ECTS)		
Semester	Second		
Goal	This course aims to offer a foundation of intelligent supervisory system techniques and their application in various real-world domains and how to implement a solution with "intelligent" functionality. Students will learn to judge when intelligent functionality and artificial intelligence may be a good solution for a problem and be able to choose suitable artificial intelligence methods and techniques. Students will also acquire knowledge enabling them to develop the necessary skills to design and implement an intelligent supervisory system.		
Syllabus	- Issues in Model-Based Fault Diagnosis		
	 Fault Detection and Isolation (FDI) Methods based on Analytical Redundancy Model-based Fault Detection Methods Model Uncertainty and Fault Detection The Robustness Problem in Fault Detection Fault Diagnosis Technique Integration Fuzzy Logic for Residual Generation Neural Networks in Fault Diagnosis Application Examples 		
Bibliography	 Steven X. Ding, "Model-based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools". Springer, (April 10, 2008). ISBN: 978-3540763031. Korbicz, J. and Koscielny, J. M. and Kowalczuk, Z. and Cholewa, W., "Fault Diagnosis: Models, Artificial Intelligence, Applications". Springer- Verlag, 2004. 1st Edition. February, 12, 2004. ISBN: 3540407677. Simani, S. and Fantuzzi, C. and Patton, R. J., "Model-based fault diagnosis in dynamic systems using identification techniques", Springer-Verlag, 2002. ISBN 1852336854. Advances in Industrial Control Series. London, UK. First Eq. November, 2002. (298 pages). Chen, J. and Patton, R. J., "Robust Model-Based Fault Diagnosis for Dynamic Systems", Kluwer Academic 		

	Publi	shers, 1999. ISF	BN: 07923841	13.	
Examination method				with	quizzes
	(multip	ple choice que	estions)		

Course title	Introduction to autonomous systems		
Scientific Discipline Sector	ING-INF/04		
Hours of instruction	10 hours		
CFU	1 credit (ECTS)		
Semester	Second		
Goal	The course aims at providing PhD students with the fundamental principles, technologies, and applications related to autonomous systems.		
Syllabus	 autonomous systems. The course will address the following aspects: Introduce the core concepts and principles underlying autonomous systems, including robotics, artificial intelligence, sensors, actuators, and decision-making algorithms. Explore the key components, architectures, mechanisms, and technologies responsible for executing actions based on the decisions made by interpreting sensor data: from simple tasks with limited decision-making capabilities to complex, self-learning systems. Showcase real-world applications across various fields: autonomous systems for automation; autonomous systems for smart environments; autonomous systems for monitoring and security. 		
Bibliography	Slides and supporting material from lecturer.		
Examination method	End-course examination based on home-works and/or tests.		

Course title	Linear Algebra for Control Applications		
Scientific Discipline Sector	ING-INF/04		
Hours of instruction	20 hours		
CFU	2 credits		
Semester	Second		
Goal	 The course will introduce advanced linear algebra tools that are commonly used in many applications in Control and System Theory. The course will address this topic from different perspective: Theory with formal proofs of many results, Algorithms to understand the most common algorithms used in MATLAB or Python for linear algebra, Implementation via MATLAB of algorithms and performance evaluation on large data sets. 		
Syllabus	 Vectors: inner products, norms, main operations Matrices: matrix-vector and matrix-matrix multiplication, Frobenius norm, complexity, sparsity Special matrices: diagonal, upper triangular, lower triangular, permutation, inverse and orthogonal A square and invertible: LU decomposition (aka Gaussian elimination), LU-P decomposition, Cholesky decomposition Ax=b via LU-P decomposition: forward and backward substitution Vector spaces: definitions, span, bases (standard, orthogonal, orthonormal), dimension, direct sum, orthogonal complement, null space, orthogonal complement theorem Gram-Smith orthogonalization. QR decomposition Ax=b via QR decomposition. LU-P vs QR Linear maps: image space, kernel, rank 		

	 Fundamental Theorem of Linear Algebra (Part I): Rank-Nullity Theorem, the 4 fundamental subspaces Eigenvalues/eigenvector. Shur decomposition Projection matrices: oblique, orthogonal, properties Positive semidefinite matrices: properties, quadratic functions, square root matrix Properties of AA' and A'A. Polar decomposition Singular Value Decomposition: proofs, properties Pseudo-inverse: definition, relation to SVD Fundamental Theorem of Linear Algebra (Part II): special orthogonal basis for diagonalization Least-Squares: definition, solution, algorithms Ill-conditioned problems vs stability of algorithms, numerical conditioning Regularized vs truncated Least-Squares
Bibliography	S. Boyd, L. Vanderberghe, Introduction to Applied Linear Algebra, Cambridge University Press, 2018, <u>http://vmls-book.stanford.edu/</u> G. Strang, The Fundamental Theorem of Linear Algebra, The American Mathematical Monthly, vol. 100(9), pp. 848-855, 1993,
	G. Strang, Linear Algebra and Learning From Data, Wellesley - Cambridge Press, 2019
Examination method	Homework sets. Final examination by written test on theory and algorithms.

· -	Τ		
Course title	Linear and Nonlinear Kalman Filtering: Theory and Applications		
Scientific	ING-INF/04		
Discipline Sector			
Hours of	20 hours		
instruction	20 110urs		
CFU	2 credits (ECTS)		
CFU	2 Credits (ECIS)		
Semester	February 2025		
Goal	This course aims to provide both theoretical and practical tools to tackle estimation problems encountered in several areas of engineering and science. In particular, it is shown how to formulate such estimation problems as instances of a general dynamical system state estimation problem and how to derive the mathematical solution of the latter problem. Then it is shown that, for a linear Gaussian system, such a solution yields the well known Kalman filter. Further, approximate techniques (e.g. extended and unscented Kalman filters, particle filter, etc.) are presented for the case of nonlinear and/or non-Gaussian systems, for which an exact closed-form solution cannot be found. To conclude the theoretical part, theoretical limitations (i.e. the Cramer-Rao lower bound) on the quality of estimation are discussed. In the final part of the course, we illustrate some applications of linear/nonlinear Kalman filtering (e.g., tracking, robotic navigation, environmental data assimilation).		
Syllabus Bibliography	 A general dynamic estimation problem in state-space form Recursive Bayesian filtering Kalman filter as recursive Bayesian filter in the linear Gaussian case Beyond the Kalman filter: nonlinear filters for nonlinear and/or non Gaussian estimation problems (extended Kal- man filter, unscented Kalman filter, particle filter, Gauss- ian-sum filter). Theoretical limits on the quality of estimation Applications to surveillance, robotic navigation and envi- ronmental data assimilation. [1] B.D.O. Anderson, J.B. Moore: Optimal Filtering, Prentice Hall, 1979. 		

	 [2] Y. Bar-Shalom, X. R. Li, T. Kirubarajan: Estimation with Applications to Tracking and Navigation – Theory, Algorithms and Software, J. Wiley & Sons, 2001. [3] B. Ristic, S. Arulampalam, N. Gordon: Beyond the Kalman Filter – Particle Filters for tracking Applications, Artech House, 2004. [4] Notes provided by the teacher.
Examination method	Final examination with a test during the last lecture

~ · · · · ·	
Course title	Optimal control for Climate change and air
	quality
Scientific	ING-INF/04
Discipline Sector	
Hours of	20 hours
instruction	
CFU	2 credit (ECTS)
Semester	Second
Goal	The course will address the fundamentals of the modelling and control of real-world systems, presenting the application of control theory to climate change and air quality. Each lesson shall consist in lecture and numerical examples.
Syllabus	 Modelling and control real-world systems: applications and challenges. Fundamentals of air quality and climate change control: objectives and constraints. Introduction to the application of optimization algorithm in control Application, examples and future
Bibliography	Slides and support material from lecturer.
Examination method	Final examination in class by written test OR individual work (presentation) on a theme to be agreed with the professor.

Course title	Learning in multi-agent systems
Scientific	ING-INF/04
Discipline Sector	
Hours of	20 hours
instruction	2 credit (ECTS)
CFU	z credit (ECTS)
Semester	First
Goal	The aim of the course is to provide a thorough overview of learning and optimization in multi-agent systems. At the end of the course, students will be familiar with applications, with the challenges of decentralized learning, and the current state-of-the-art solutions. Additionally, they will have an overview of current research trends and opportunities. Lessons will merge theoretical lectures and numerical examples (using Python).
Syllabus	 Discussion of motivating applications; Brief review of convex optimization; Moving from centralized to decentralized learning; Multi-agent systems and their architectures; Federated learning; Fully decentralized learning; Research trends and open questions; Coding hands-on experience.
Bibliography	 S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university press, 2004. A. Nedić, J. Pang, G. Scutari, and Y. Sun, Multi-agent optimization, vol. 2224. in Lecture notes in mathematics CIME Foundation subseries, vol. 2224. Cetraro: Springer, 2014. Q. Yang, L. Fan, and H. Yu, Eds., Federated Learning: Privacy and Incentive, vol. 12500. in Lecture Notes in Computer Science, vol. 12500. Cham: Springer International Publishing, 2020. P. Kairouz et al., "Advances and Open

	Problems in Federated Learning," Foundations
	and Trends® in Machine Learning, vol. 14, no.
	1-2, pp. 1-210, 2021.
	- G. Notarstefano, I. Notarnicola, and A.
	Camisa, "Distributed Optimization for Smart
	Cyber-Physical Networks," Foundations and
	Trends $^{ m I}$ in Systems and Control, vol. 7, no.
	3, pp. 253-383, 2019.
	- T. Li, A. K. Sahu, A. Talwalkar, and V.
	Smith, "Federated Learning: Challenges,
	Methods, and Future Directions," IEEE Signal
	Process. Mag., vol. 37, no. 3, pp. 50-60, May
	2020.
Examination method	Homework (with coding and written report)

Course title	Nonlinear Control
Scientific Discipline Sector	ING-INF/04
Hours of instruction	20 hours
CFU	2 credits (ECTS)
Semester	Second
Goal	The course introduces analytical tools for the analysis and design of nonlinear control systems. At the end of the course students will understand how to analyze the stability of nonlinear dynamic systems and knowledge of some of the main approaches for designing nonlinear controllers. Basic engineering examples and Matlab exercises are provided.
Syllabus	 Lyapunov stability of equilibrium points, input-output stability, and stability of feedback systems; State feedback stabilization; Output feedback stabilization; Nonlinear observers; Tracking and regulation; Nonlinear control design tools;
Bibliography	- Khalil, H. K. (2002). <i>Nonlinear Systems 3rd Ed</i> . Prentice Hall.
Examination method	Final examination in class

Course title	Variable Structure Control
Scientific	ING-INF/04
Discipline Sector	TNG-TNF/04
Hours of	10 hours
instruction	
CFU	1 credit (ECTS)
Semester	Second
Goal	The course will present the characteristics of variable structure control with sliding modes, presenting the main tool for analyzing and designing such control systems. The robustness features of the sliding mode control and observation approach will be presented and discussed. Each lesson shall consist in lecture and numerical examples. The attendees will be able to carry on the design of a sliding mode
Syllabus	controller or observer for SISO systems. - Characteristics of variable structure
	<pre>systems; - Zeno behaviors in variable structures systems; - Flippov's continuation method and Utkin's equivalent control in sliding modes; - Matched disturbances and robustness of sliding mode control; - Observers and unknown input observer design with sliding modes; - Applicative examples from literature: analysis and implementation in engineering tools (e.g., Matlab)</pre>
Bibliography	<pre>Boiko, I. (2009). Discontinuous control systems - Frequency-domain analysis and design. Boston: Birkhäuser. Cruz-Zavala, E., Moreno, J.A. (2017). Homogeneous High Order Sliding Mode design: A Lyapunov approach. Automatica 80, pp. 232- 238. Edwards, C., and Spurgeon, S.K. (1998). Sliding mode control: theory and applications. London: Taylor and Francis. Fridman, L., Shtessel, Y., Edwards, C., Yan, XG. (2008). Higher-order sliding-mode observer for state estimation and input</pre>

	<pre>reconstruction in nonlinear systems. International Journal of Robust and Nonlinear Control 18(4-5), pp. 399-412. Levant, A. (1993). Sliding order and sliding accuracy in sliding mode control. International Journal of Control 58(6), pp. 1247-1263. Levant, A. (2003). Higher-order sliding modes, differentiation and output-feedback control. International Journal of Control 76(9-10), pp. 924-941. Levant, A., Fridman, L.M. (2010). Accuracy of homogeneous sliding modes in the presence of fast actuators. IEEE Transactions on Automatic Control 55(3),5406047, pp. 810-814. Moreno, J.A. (2022). Arbitrary-Order Fixed- Time Differentiators. IEEE Transactions on Automatic Control 67(3), pp. 1543-1549. Pisano, A., Usai, E. (2011). Sliding mode control: A survey with applications in math. Mathematics and Computers in Simulation 81(5), pp. 954-979. Shtessel, Y., Edwards, C., Fridman, L., Levant, A. (2013). Sliding Mode Control and</pre>
	Shtessel, Y., Edwards, C., Fridman, L., Levant, A. (2013). Sliding Mode Control and Observation. New York: Birkhäuser.
Examination method	Utkin, V.I. (1992). Sliding mode in control and optimization. Berlin: Springer-Verlag. Final examination in class