

Course Syllabus for DAUSY National Ph.D. Program in Autonomous Systems (year 2023-24)

Course title	Game Theory for Controlling Autonomous Systems
Scientific Discipline	ING-INF/04
Sector	
Hours of instruction	20 hours
CFU	2 CFU
Semester, period	June-July 2024
Goal	This course is designed to provide PhD students with the necessary modeling and
Guai	methodological tools for analyzing and designing algorithms to solve game equilibrium
	problems. The course will include lectures, numerical examples, simulations, and
	analysis of case studies.
Syllabus	1. Introduction and motivation
	2. Background
	a. Convex Optimization: Convex sets and functions. Set-valued
	mappings. Normal cone and tangent cone operators. Projection and
	b Monotone Operator Theory: Fixed points, zeros, and contraction
	mappings Averaged and nonexpansive mappings Fixed point
	theorems and algorithms.
	3. Nash equilibrium
	a. Background, Nash equilibrium problem and best response mapping.
	b. Applications and models: Linear complementarity problems and
	variational inequalities.
	c. Existence and uniqueness of equilibria.
	d. Algorithms.
	4. Generalized Nash equilibrium
	a. Background, Generalized Nash equilibrium problem.
	b. Applications and models: Quasi-variational inequalities and mixed
	c Existence and uniqueness of equilibria
	d Algorithms
Bibliography	References:
Dibliography	[1] Boyd, Stephen P., and Lieven Vandenberghe. <i>Convex optimization</i> .
	Cambridge university press, 2004.
	[2] Bauschke, Heinz H., and Patrick L. Combettes. Convex analysis and
	monotone operator theory in Hilbert spaces. Vol. 408. Springer, 2011.
	[3] Facchinei, Francisco, and Jong-Shi Pang, eds. <i>Finite-dimensional</i>
	variational inequalities and complementarity problems. Springer, 2003.
	[4] Osborne, Martin J. An introduction to game theory. Vol. 3. No. 3. New
	10rk: Oxford university press, 2004. [5] Basar, Tamar, and Gaargas Zaccour, ads. Handbook of dynamic game
	theory Berlin: Springer 2018
	Slides and supporting material from lecturer
Examination method	• End-course examination based on a project work, which involves applying the
Lammation method	learned concepts and techniques to a real-world problem.
	• Evaluation of class participation, including active engagement in lectures.
	discussions, and case study analysis.